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Specific features of spin relaxation and the kinetics of spin effect generation in radical pairs (RPs) undergoing
subdiffusive relative motion are studied in detail. Two types of processes are analyzed: (1) spin relaxation
in biradicals, resulting from anomalously slow subdiffuisive reorientation (with the correlation functionP(t)
∼ (wt)-R, where 0< R < 1) and (2) spin effect generation in subdiffusion-assisted RP recombination. Analysis
is made with the use of the non-Markovian stochastic Liouville equation (SLE) derived within the continuous
time random walk approach. The SLE predicts anomalous (very slow and nonexponential) spin relaxation in
biradicals which results in some peculiarities of the spectrum of the system. In RP recombination, the
subdiffusive relative motion shows itself in slow dependence of the reaction yieldYr on reactivity and parameters
of the RP spin Hamiltonian and anomalous electron spin polarization of escaped radicals. The spectrum of
the reaction yield detected magnetic resonance, that is, theYr dependence on the frequencyω of microwave
field, is found to be strongly non-Lorenzian with the width determined by the field strengthω1 and very
broad wings depending onR. Analysis shows that the majority of interesting, specific features of the observables
in both systems are controlled only by the parameterR.

I. Introduction

Spin-lattice relaxation and spin effects are the well-known
phenomena in the condensed-phase processes involving para-
magnetic particles, for example, radicals.1-4 They result from
spin-dependent interactions between these particles, strongly
fluctuating because of the stochastic relative motion of the
particles.

The methods of describing the manifestations of these
fluctuating interactions are well developed and discussed in
detail in many books and reviews (see, for example, refs 1 and
5). A very large number of them are based on the conventional
short correlation time (SCT) approximation1 which leads to
Bloch-type equations for the spin density matrix. To treat the
problem outside the conventional SCT limit, different methods
have been proposed. One of them rests on the Zwanzig
projection operator formalism.5 Unfortunately, this formalism,
leading to formally exact expressions, is not of great use for
applications because it includes all the complexity of statistical
physics. Really, tractable formulas can be obtained only within
additional approximations. Another method which enables one
to make important steps beyond the SCT limit is based on the
semiclassical stochastic Liouville equation (SLE) for the density
matrix of the system.6 The strong limitation of the SLE approach
consists of classical treatment of the bath. At the same time,
unlike the Zwanzig formalism, the SLE approach is exact and,
therefore, is free of a number of above-mentioned drawbacks
of this formalism. Note the second significant limitation of the
SLE, important for this work, results from the assumption that
the interaction fluctuations are Markovian.

Recently, close interest to the effects of non-Markovian (with
long memory) interaction fluctuations on relaxation in quantum
systems has been excited by investigations of processes
governed by noises whose correlation functionsP(t) decay
anomalously slowly:P(t) ∼ t-R with R < 1. One of the most
actively discussed examples of such noises are those controlled

by anomalous diffusion (subdiffusion) for which the mean
square displacement〈r2(t)〉 ∼ tR.8

A number of phenomena, in which anomalous processes play
important role, are discussed in the literature.7,8 Some of them
are analyzed in relation to spectroscopic studies of quantum
dots.9,10Similar problems are considered in the classical theory
of dielectric relaxation11 (and references therein). All anomalous
relaxation processes mentioned above cannot be properly
described within the conventional SCT limit. The conventional
SLE approach is not appropriate either.

The efficient method of analyzing the memory effects is based
on the continuous time random walk (CTRW) approach.12-14

Within this approach, one can derive the non-Markovian variant
of SLE15,16 which appeared to be very fruitful for describing
memory effects on some classical and quantum processes
assisted by stochastic anomalous spatial migration.17,18

In this work, the non-Markovian SLE is applied to the
analysis of specific features of spin relaxation and magnetic
field (spin) effects2-4 in radical pairs undergoing subdiffusive
relative motion. As an example of relaxation processes, we will
discuss spin relaxation in biradicals with special attention
concentrated on the limit of short characteristic time (of type
of correlation time), describing an anomalous stochastic reori-
entation process. In this limit, the kinetics of anomalous quantum
relaxation in biradicals (induced by this reorientation) appears
to be independent of the particular model of orientational
relaxation,18 demonstrating some interesting specific features.
As for magnetic field (spin) effects in radical pair recombination
assisted by relative subdiffusion, they are also shown to have
some important specific features resulting from the anomalous
character of relative motion (associated with the anomalously
long memory effects in the system): nonanalytical dependence
of magnetic field affected recombination yield (MARY) and
chemically induced dynamic electron polarization (CIDEP) on
the parameters of the spin Hamiltonian, strongly non-Lorenzian
shape of lines of reaction yield detected magnetic resonance
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(RYDMR), etc. The obtained specific features of various
observables can be used for the identification and analysis of
the anomalous motion of radicals in inhomogeneous media.

II. General Formulation

We consider relaxation in the quantum system induced by
quantum noise and fluctuating irreversible first-order processes
(the state-dependent decay, etc.). Evolution of the system is
described by the density matrixF(t) satisfying the Liouville
equation. In the absence of irreversible first-order processes, it
is written as (p ) 1)

Here

is the Hamiltonian in whichHs is the term independent of time
andV(t) is the fluctuating interaction, assumed to be symmetric
(〈V〉 ) 0) and resulting from stochastic jumps between the states
|rν〉 in the (discrete or continuum) space{rν} ≡ {r} with
differentV ) Vν andH ) Hν (i.e., differentV̂ ) V̂ν ≡ [Vν, ...]
and Ĥ ) Ĥν)

Hereafter, we will apply bra-ket notation

for states in the Hilbert space (forH), in the Liouville space
(for Ĥ), and in{r} space, respectively.

The effect of the above-mentioned irreversible first-order
processes can be described by the non-Hermitian “reactivity”
operator-iK̂ in the Liouville space so that, in general, the
Liouville equation can be represented as

It is worth mentioning that the effect of the “reactivity”iK̂
can, in principle, lead to a violation in the positivity ofĜ.
However, there are some particular forms of this operator that
are known to ensure the positivity.2 One of them,iK̂F ) κ{Pκ,F}
) κ(PκF + FPκ), wherePκ is the operator of projection onto
the reaction state|κ〉, will be applied in our work.

The time evolution of observables under study is determined
by the evolution operatorR̂(t) in the Liouville space averaged
over V(t) andK(t) fluctuations

The operatorR̂(t) can equivalently be represented in terms of
the conditional evolution operatorĜ(r,r′| t) averaged over the
initial distribution Pi(r)

Note that for steady-stateV(t) fluctuationsPi(r) ) Pe(r), where
Pe(r) is the equilibrium distribution. For some processes,

however, the observables are expressed in terms of the operator
Ĝ(r,ri|t) itself rather thanR̂(t) (see section IVC).

III. Non-Markovian Stochastic Liouville Equations

Continuous Time Random Walk Approach. Non-
Markovian V(t) and K̂(t) fluctuations can conveniently be
described by the CTRW approach treating them as a sequence
of changes ofV̂ andK̂. The onset of thejth change is described
by the diagonal matrixP̂j-1 (in {r} space) of probabilities not
to have any change during timet and its derivativeŴj-1(t) )
-dP̂j-1(t)/dt, that is, the probability distribution matrix for times
of waiting for the change

so thatŴj-1(t) ) Ŵ(t) ) -dP̂(t)/dt andŴ0(t) ≡ Ŵi(t) ) -dP̂i(t)/
dt. The matricesP̂i(t) and Ŵi(t) depend on the problem
considered. For example, for nonstationary (n) fluctuations12-14

In the case of stationary (s) fluctuations,Ŵi(t) ) Ŵs(t) ) τ̂e
-1

∫t
∞ dτ Ŵ(τ) with τ̂e ) ∫0

∞ dt tŴ(t).12-14

It is worth noting useful relations for the Laplace transforms
of Ŵj(t) and P̂j(t): P̃j(ε) ) [1 - W̃j(ε)]/ε and

whereΦ̂(ε) is the auxiliary matrix diagonal in{r} space.
Stochastic Liouville Equation. The time evolution of

quantum systems with fluctuating interactions is completely
described by the conditional evolution operatorĜ(r,r′|t). The
CTRW approach allows one to derive the equation for this
operator which is called hereafter non-Markovian SLE.15,16 In
what follows, we will discuss the SLE in the form proposed in
ref 16, which is much more suitable for our further general
analysis and especially for considering anomalous relaxation
processes. The non-Markovian SLE is conveniently represented
in the resolvent form for the Laplace transformG̃(ε) ) ∫0

∞ dt
e-εtĜ(t)15,16

where Ω̂ ) ε + iL̂. In eq 3.4, P̃i and W̃i are the Laplace
transforms of the initial probability distribution matrices defined
in eq 3.1 andΦ̂(Ω̂) is the matrix which characterizesŴ(t) )
Ŵn(t) (see eq 3.3).

The operatorL̂ describes jump-like radical motion. For
simplicity, we will assume that one of the radicals undergoes
isotropic diffusion in three-dimensional{r} space, while the
second radical does not move and is located atr ) 0. In this
model16

where r ) |r |, ∇r ) ∂/∂r is the gradient operator,λ2 is the
average square of the jump length independent ofr, andur is
the external interaction potential.

The potentialur is assumed to be the deep spherical well of
radiusR much larger than the distanced of closest approach of
radicals: ur ) -u0θ(R - r) with u0 . 1.

F̆ ) -iĤ(t)F with ĤF ) HF - FH (2.1)

H(t) ) Hs + V(t) (2.2)

V̂ ) ∑
ν

|rν〉V̂ν〈rν|

and

Ĥ ) ∑
ν

|rν〉Ĥν〈rν| (2.3)

|k〉, |kk′〉 ≡ |k〉〈k′|, and|r〉 (2.4)

F̆ ) -iL̂F, in which L̂ ) Ĥ - iK̂ (2.5)

F(t) ) R̂(t)Fi whereR̂(t) ) 〈Te-i∫0
tdτL̂(τ)〉 (2.6)

R̂(t) ) 〈Ĝ〉 ≡ ∑
r,ri

Ĝ(r,ri|t)Pi(ri) (2.7)

P̂j-1(t) ) P̂(t) (j > 1) P̂0(t) ≡ P̂i(t) (3.1)

Ŵi(t) ) Ŵn(t) ) Ŵ(t) (3.2)

W̃(ε) ) [1 + Φ̂(ε)]-1 P̂(ε) ) [ε + ε/Φ̂(ε)]-1 (3.3)

G̃ ) P̃i + Ω̂-1Φ̂(Ω̂)[Φ̂(Ω̂) + L̂]-1 P̂W̃i (3.4)

L̂ ) L̂D ) -λ2r-2∇r[r
2(∇r + ∇rur)] (3.5)
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Noteworthy is that in this continuum model of stochastic
jumps V̂ and K̂ are just functions ofr

If operatorL̂ (eq 3.5) has the equilibrium eigenstate|er〉 )
∑r Pe(r)|r〉 (and 〈er| ) ∑r 〈r|) for which L̂|er〉 ) 0, then the
system relaxes to this state.

In our analysis, we will concentrate on anomalous interaction
fluctuations which are often modeled by8,16

wherew is the important rate parameter which determines the
characteristic timew-1 of correlations of interaction fluctuations.
Formula 3.7 presents the simplest variant of the model describ-
ing anomalously slow decay of the probability distribution
matrix8 with P(t) ) ER[-(wt)R] and

whereER(-x) ) (2πi)-1 ∫-i∞
i∞ dx(z + xz1-R)-1ez is the Mittag-

Leffler function.19 It is easily seen that this anomalous type of
the CTRW approach cannot be characterized by any average
time and, therefore, for model 3.7, only the nonstationary (n)
variant of the CTRW is physically sensible.

Note that for any initial state|ir〉 ) ∑r Pi(r)|r〉 the average of
some operatorŶ can be represented as〈Ŷ〉i ) 〈er|Ŷ|ir〉. In
particular (see eq 2.7)

According to eq 3.4, the initial state|i〉 manifests itself only
in the expressions for matricesŴi(t) andP̂i(t). For example, in
the nonstationaryn-CTRW approach, which is of main interest
for this analysis,|i〉 ) |t〉12-14 so thatW̃i ) W̃n, P̃i ) P̃n, and

IV. Applications and Discussion

Here, we will apply the general formulas presented above to
two types of processes: transversal spin relaxation (dephasing)
in biradicals (as applied to the ESR line shape) and spin effects
in RP recombination in liquids, which will be analyzed to
illustrate the obtained general results.

A. Relaxation in Biradicals. 1. Formulation of the Model.
Interaction. In accordance with the conventional formulation,1

we will consider spin relaxation in biradicals in the strong
magnetic fieldB. The biradical is modeled as a pair of pointlike
paramagnetic particles with electron spins of 1/2,Sa and Sb,
located at a fixed interparticle distancer0 in the strong magnetic
field B. Dephasing (transversal relaxation) results from the
modulation of the Zeeman levels caused by the fluctuating
magnetic dipole-dipole interaction.1 This process is described
by the Hamiltonian1

in which

whereωd ) (3/4)b-3pγ2 and γ ) gµB/p is the gyromagnetic
ratio. The fluctuations ofV are assumed to be governed by
orientational relaxation of the biradical resulting in fluctu-
ations of the angleθ between the vectorb of the relative position
of radicals and thez direction of the external magnetic field
B.1

Model of Orientational Relaxation. The problem of the
study of spin relaxation kinetics and the evaluation of ESR line
shape reduces to solving the complicated SLE (eq 3.4) corre-
sponding to anomalous relative orientational motion of bi-
radicals. Analytically this can be done within a number of
approaches, for example, subdiffusion (withL̂ defined in eq
3.5) or sudden reorientation models.15,18Earlier considerations21

demonstrated that both these types of models reproduced quite
well all conventional specific features of dephasing in biradicals.

We are not going to analyze in detail different models of
orientational relaxation but restrict ourselves to the demonstra-
tion (as an example) of the simple expression forR̃ in the sudden
reorientation model:R̃) R̃n ) 〈P̃〉[1 - 〈W̃〉]-1. This expression
enables one to easily obtain a formula forR̃n in the limit of
short characteristic timew-1 of anomalous orientational relax-
ation.18 The limiting formula is, in fact, independent of the
mechanism of reorientation and is of main interest for our further
analysis.

It is important to note that, in the case of anomalous
reorientation statistics (with the correlation functionP(t) ∼ 1/tR

(R < 1)) such as that predicted by model 3.8,w-1 cannot be
treated as the correlation time. Actually, in this model, the
correlation (average) time does not exist. This peculiarity of
the anomalous reorientations results in a very unusual behavior
for the relaxation kinetics in the quantum system in the limit of
shortw-1 (see below).

Spectrum. In the considered case of anomalous interaction
fluctuations, the biradical spectrumI(ω) cannot be defined by
the conventional formula in terms of the Fourier transformation
of the correlation function because it appeals to the Wiener-
Khinchin relation which is not valid for anomalously slowV(t)
interaction fluctuations. The relaxation properties of such anom-
alous systems can be analyzed with the use of the anomalous
spectrum measured by Fourier transformed free induction decay
(FTFID) experiments20 I(ω) ∼ ∫0

∞ dt cos(ωt)〈Sx(t)〉, whereSx is
the x component of the spin. For considered anomalous
fluctuations, this spectrum represents the generalization of the
conventional one. For the system under study, the anomalous
FTFID spectrum is written as follows

where

2. Results.In our analysis of the biradical spectrum, we will
restrict ourselves to the limit of short effective correlation time
w-1 of fluctuations (see eq 3.7) in whichωd/w , 1. The SCT
limit is of special interest because in this limit any conventional
Markovian (diffusion or sudden reorientation type) models of
orientational relaxation predict the collapse of the spectrum, that
is, the transformation to theδ-function-like one at the center
of the spectrum.1,21 At the same time, in anomalous non-
Markovian models (with the CTRW reorientation statistics,

V̂ ) ∑
r

|r〉V̂r〈r|

and

K̂ ) ∑
r

|r〉K̂r〈r| (3.6)

Φ̂(ε) ) (ε/w)R (0 < R < 1) (3.7)

Ŵ(t) ) -ĖR[-(wt)R] ∼ 1/t1+R (3.8)

R̂(t) ) 〈er|Ĝ|ir〉 ≡ 〈Ĝ〉i (3.9)

G̃(ε) ) G̃n(ε) ) Ω̂-1Φ̂(Ω̂)[Φ̂(Ω̂) + L̂]-1 (3.10)

Hs ) -ωs(Saz + Sbz) + V(t) (4.1)

V ) ωd(cos2 θ - 1/3)(3SazSbz - SaSb) (4.2)

I(ω) ) 1
π

Re〈ss|R̃(iω)|ss〉 (4.3)

|ss〉 ) 1

x2
|T+T0〉 + |T-T0〉〉 (4.4)
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described by eqs 3.3 and 3.7), the limiting spectrum is
incomparably less trivial. The corresponding specific features
of anomalous non-Markovian reorientation mechanism manifest
themselves not only in dephasing (and, therefore, in spectrum)
but also in population relaxation.18

Some interesting unusual properties of anomalous relaxation
caused by anomalous non-Markovian reorientation can easily
be demonstrated even with the general expression for the
evolution operator, which in the anomalous SCT limit (ωd/w
, 1) is represented as18

The most important property consists in nontrivial form of this
operator, which is independent of the characteristic timew-1

and is only determined by the anomalous exponentR (see eqs
3.7 and 3.8).

Note, in addition, that the expression 4.5 is quite universal:
it is valid for any mechanism of anomalous orientational
relaxation of subdiffusion or sudden reorientation type. The only
feature implied in the derivation of this expression is the slow
asymptotic long time behavior ofW(t) ∼ 1/t1+R. Further-
more, the analysis of formula 4.5 with the Markovian repre-
sentation for the anomalous CTRW processes16 shows that the
formula is valid for a large variety of the initial waiting-time
distributionWi(t) (see section III) of the nonstationary CTRW
process.

To obtain the spectrumI(ω), one should substitute the
expression 4.5 into eq 4.3. After simple algebra, one arrives at

Here,I0(x) is given by formula

in which æ0 ) πR and

whereθ(x) is the Heaviside step function,B(y,z) is Euler’s â
function,22 andu(x) ) (3/(1 - x))1/2.

The anomalous biradical spectrum evaluated with eq 4.6 for
different values ofR < 1 is shown in Figure 1. In general,
specific features of the shape of this spectrumI(x) are
significantly different from those of the conventional spectrum
(observed in the case of reorientation relaxation resulting from
conventional rotational diffusion):1

(1) I(x) is confined in the region-2 < xd < 2; asR increases
from 0 to 1, the spectrum changes from the quasistatic one to
that of Lorenzian shape with the widthws ∼ (1 - R)ωd at 1-
R , 1. The central peak appears atR ) Rs ≈ 0.32.

(2) Unlike the conventional spectrum, forR < 1/2 the
anomalous spectrumI(x) is singular atx ) (1: at |x| < 1 and
1 - |x| , 1, I(x) ∼ (1 - |x|)R-1/2.

(3) As R f 1, the spectrumI(x) reduces to the Lorenzian
one (similar to the case of the two-level system10,18) with the

width wL decreasing aswL ∼ wd(1 - R).18 Note that, unlike the
Lorenzian spectrum in the conventional narrowing limit,1 the
anomalous spectrum (eq 4.6) forR f 1 has the widthwL

independent of the characteristic timew-1. For R approaching
1, the spectrumI(x) f ∆(x), as it is expected for Markovian
fluctuations withw f ∞.

This brief discussion of the anomalous spectrum shows that
its peculiarities are fairly pronounced and can, probably, be
observed experimentally. In the case of finite effective correla-
tion timew-1, the above-mentioned singularities of the anoma-
lous spectrumI(x) will, of course, be partially smoothed but,
nevertheless, the most important specific features ofI(x), such
as very pronounced shoulders atx ∼ (1, are expected to persist.

B. Radical Pair Recombination.The spin (magnetic field)
effect on reactions of paramagnetic particles undergoing sub-
diffusive relative motion is another interesting example of
processes in which the manifestation of anomalously long
memory (associated with an anomalous (subdiffusive) type of
motion) in observables is expected to be markedly strong. In
this work, we will consider spin effects in radical pair
recombination.

It is worth noting that the anomalous SLE which describes
spin effects turns out to be fairly close to the conventional one
in its mathematical form and, therefore, the corresponding
anomalous expressions for amplitudes of spin effects can be
obtained by clear and simple modifications of the conventional
ones. This will allow us to analyze a number of anomalous
effects of different types by analogy with the corresponding
conventional effects.

1. Formulation of the Model. Interaction between Radi-
cals. To demonstrate the most important specific features of
anomalous spin effect on subdiffusion-assisted radical pair
recombination, we will restrict ourselves to the analysis of
simple effects observed in the strong magnetic fieldB for which
the Zeeman interaction is much larger than intraradical interac-
tions (hyperfine interaction, etc.) but will also consider the effect
of the external microwave fieldB1 rotating with the frequency
ω in the plane perpendicular toB.

For strong magnetic fields (in the presence of the fieldB1),
the spin Hamiltonian governing the evolution of electron spins
Sa andSb of radicals, denoted asa andb, can conveniently be
written in the frame of reference rotating aroundB with the
frequencyω4

Figure 1. Biradical ESR spectrumI(x), wherex ) ω/ωd, calculated
in model 4.2 (using eq 4.6) for different values ofR: (1) R ) 0.3, (2)
R ) 0.5, (3)R ) 0.7, and (4)R ) 0.85.

R̃(ε) ≈ R̃n(ε) ≈ 〈Ω̂-1Φ̂(Ω̂)〉/〈Φ̂(Ω̂)〉 (4.5)

I(x) ) 1
2

[I0(x) + I0(-x)] with x ) (ω - ωs)/ωd (4.6)

I0(x) )
sin æ0

π
ψ-

R ψ+
R-1 + ψ-

R-1 ψ+
R

(ψ-
R)2 + (ψ+

R)2 + 2ψ-
R ψ+

R cosæ0

(4.7)

ψ-
â ) 〈|x - V/ωd|âθ(x - V/ωd)〉V

) (1 - x)â+1/2B(1/2, 1+ â) (4.8)

ψ+
â ) 〈|x - V/ωd|âθ(V/ωd - x)〉V

) ψ+
â (x) ∫1

u(x)
dV (V2 - 1)â (4.9)

Hr ) Hz
0 + Jr (4.10)
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In this equation, the last term is the exchange interaction

and

is the Zeeman part, which is a sum of two ones defined as

whereωµ ) gµâB + ∑j Aj
µIjz is the Zeeman frequency of the

radicalµ possessing some paramagnetic nuclei with hyperfine
interactionsAj

µ and ω1 ≈ 1/2(ga + gb)âB1. The Hamiltonian
(eq 4.10) operates in the space of radical pair spin states|(〉a|(〉b

or in the space of eigenstates of the total spinS ) Sa + Sb: |S〉
) 1/(2)1/2(|+〉a|-〉b - |-〉a|+〉b), |T0〉 ) 1/(2)1/2(|+〉a|-〉b +
|-〉a|+〉b), and|T(〉 ) |(〉a|(〉b.

In the absence of the microwave field, the evolution is still
described by the spin Hamiltonian (eq 4.10) but withω1 ) 0
andω ) 0.

Radical pair recombination can be treated as a contact reaction
at a distance of closest approachd using the following simple
model4

where κ̂S ) {Ps, ...} is the anticommutator ({Ps,F} ) PsF +
FPs) in which Ps ) |S〉〈S| is the operator of projection on the
singlet (|S〉) radical pair spin state.

The radical pair is assumed to be initially created in the|S〉
state within the wellur at a distanceri, d < ri < R, so that

Spin Effect Observables.In experiments on spin effects, a
number of observables are discussed.4 Here, we analyze the most
simple ones:

(1) Two of the most popular are MARY4 and RYDMR.4 In
both types of experiments, the observables under study are
recombination (Yr) and dissociation (Yd) yields

Naturally, formula 4.16 should be averaged over nuclear
configuration (overωµ). However, in our further discussion, we
will omit this procedure and analyze the behavior ofYr for fixed
ωa andωb (as in radical pairs without paramagnetic nuclei).

(2) Another well-known type of magnetic field effects is
multiplet CIDEP determined as2

2. Anomalous SLE.Subdiffusion of the mobile radical of
the radical pair (recall that the second radical is assumed to be
immobile) leads to nonstationary fluctuations ofK̂r andĤr. The
effect of them is described by the operatorG̃(r,ri|ε) satisfying
the non-Markovian SLE (eq 3.10)

whereΩ̂r ) ε + K̂r + iĤr andM̃r ) Ω̂r/Φ(Ω̂r) ) w(Ω̂r/w)1-R.
In general, the solution of eq 4.18 with the Smoluchowski

operatorL̂D (eq 3.5) is fairly complex. First of all, to find the

expression forG̃, one needs to solve the homogeneous equa-
tion23

Fortunately, this can be done within the approach called sudden
perturbation approximation.23,24 The details of the method can
be found elsewhere.23 Here, we will only outline its main points.
In this approach, in the lowest order in the small parameterú
) (ωa,b/w)(Rλ)-2 , 1, the solutionsg̃(r) can be found by
matching (at some distancer0) two simplified solutionsg̃-(r)
and g̃+(r) obtained atr < r0 and r > r0, respectively. The
functionsg̃-(r) and g̃+(r) are still the solutions of eq 4.19 but
with Ω̂r ) Ω̂r

+ ) Ĵr and Ω̂r ) Ω̂r
- ) ε + K̂r + iĤz

0,
respectively. Since the matrixesΩ̂r

+ andΩ̂r
- are diagonal in

the bases independent ofr, the problem of determiningg̃-(r)
and g̃+(r) reduces to solving one-channel equations. It is
important to note that this piecewise solutiong̃(r), obtained in
the lowest order of expansion in the powers ofú , 1, is
independent of the auxiliary parameterr0 (as was rigorously
shown23 and as actually should be).

The one-channel solutions required for constructing the
matrix solutionsg̃-(r) andg̃+(r) can be found analytically in a
number of realistic models. To illustrate the most interesting
specific features of spin effects, it is sufficient to consider the
simplest ones. In our analysis, we will concentrate on the models
of free diffusion and diffusion in a deep wellur (called a cage
model24).

Free Diffusion Model. For the free diffusion model (with
L̂D ) - λ2r-2∇r(r2∇r)), a direct comparison of the anomalous
SLE (eq 4.18) with the corresponding conventional one23 and
the analysis made above (see section IVB2) allow for the
conclusion that expressions for the values of spin effects derived
earlier23 remain the same but with the exchange and intraradical
interaction termsiJ0e-Rex(r-d) andiQ/D replaced by [iJ0e-Rex(r-d)]R

and (iQ/D)R, respectively. This observation enables one to obtain
formulas for the values of MARY (Yr), RYDMR [Yr(ω)], and
CIDEP (Ye) easily.

Cage Model.In the presence of the large deep potential well
ur ) - u0θ(R - r), for which R . d and u0 . 1, fast
subdiffusion leads to rapid relaxation of the initial spatial
distribution of the radical (created within the well) during the
time τD ) (R/λ)2/R/w and formation of the nearly homogeneous
quasi-equilibrium state (cage) within the well. Att > τD, reaction
(with the second radical atr ) 0) and dissociation result in the
quasi-stationary decay of the cage which is independent of the
distanceri of radical pair creation. In this system, the (anoma-
lous) recombination kinetics can be found within the approach
proposed in ref 24

wherePs ) |S〉〈S| is the projection operator on the|S〉 state and
l̂ ) l̂r + l̂ j + l̂e. In eq 4.20, the supermatrixesl̂r, l̂e, andl̂ j describe
the effect of recombination, escaping from the cage, and
exchange interaction, respectively

and l̂ j ) (3λ2/R3)[Lj|ST0〉〈ST0| + Lj
/|T0S〉〈T0S|], where Lj )

Rj
-1{dRj + ln[2J0/(wλ2Rj

2)] + iπ/2}, with Rj ) RRex andφ̂S )
(∆d/λ2)(k0κ̂S/w)R.

Jr ) J0e
-Rex(r-d) (12 + 2SaSb) (4.11)

Hz
0 ) Ha + Hb (4.12)

Hµ ) (ωµ - ω)Sµz + ω1Sµx (µ ) a, b) (4.13)

K̂r ) k0κ̂Sθ(r - d )θ(d + ∆ - r) (4.14)

F(r,t ) 0) ≡ Fi(r) ) (4πri
2)-1δ(r - ri)Ps (4.15)

Yr ) 1 - Yd ) (d/ri)
2∆k0Tr[PsG̃(d, ri|ε ) 0)Ps] (4.16)

Ye ) lim
εf0

ε ∫r>d
d3r Tr[SaG̃(d, ri|ε)Ps] (4.17)

Ω̂rG̃ ) -L̂D(M̃rG̃) + (4πri
2)-1δ(r - ri) (4.18)

[(Ω̂r/w)R + L̂D]g̃ ) 0 whereg̃ ) M̃rG̃ (4.19)

Yν ) Tr{ l̂ ν[ l̂ + (iĤz
0/w)R]-1Ps} (ν ) r, e) (4.20)

l̂ r ) (3dλ2/R3)φ̂S(1 + φ̂S)
-1

l̂ e ) 3(λ/R)2e-u0 (4.21)
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Noteworthy is that, in accordance with the general properties
of the subdiffusion-assisted processes and the corresponding
non-Markovian SLEs mentioned above, the general expression
4.20 for anomalous observables differs from the conventional
one24 by replacingĤz

0 by (Ĥz
0)R and renormalizing the reaction

and relaxation radii.
3. Results.A simple inspection of general matrix formulas

of section IVB2 demonstrates that the expressions for the
amplitudes of anomalous and conventional spin effects are
actually very similar. As we have already mentioned above,
the difference mainly reduces to replacing the conventional
reaction and dephasing radii by the corresponding anomalous
ones and changing the spin HamiltonianĤz with (Ĥz)R. The last
change shows itself in the change of the dependence of spin
effects on theST0 splitting

For example, in the conventional free diffusion model spin
effects are∼|Q|1/2, while in the anomalous free diffusion
(subdiffusion) one spin effects are∼|Q|R/2 (see below).

MARY. In the considered limit of the strong magnetic field
B, B . Aj

µ/(gµâB), the effect of spin evolution on the reaction
yield called MARY can be studied within theST0 approxima-
tion,4 which takes into account that for strongB the contribution
of |T(〉 terms to the reaction yield is negligibly small and the
spin Hamiltonian is given by eq 4.10 withω1 ) 0 andω ) 0.
We also putJ0 ) 0 because the effect of the exchange interaction
on MARY is known to be negligibly weak.2

1. Free Diffusion Model.Taking into account the expression
for the yieldYr in the case of conventional diffusion23 and above
remarks on the relation between this formula in conventional
and anomalous processes, one can write in the limit of strong
reactivity in theS state and initial population of theT0 state

whereφr ) cos(πR/4)(|Q|d2/λ2w)R/2. Noteworthy is the anoma-
lously weak dependence ofYr on the parameter|Q|d2/λ2w for
R < 1, which reduces to the conventional one atR ) 1.

2. Cage Model.The important features of anomalous MARY
dependencies can be demonstrated in the limit of weak magnetic
interactions, (|Q|/w)R , le,|l̂r|, in which one can evaluate MARY
with the lowest order of expansion ofYr (eq 4.20) in the powers
of Ĥz

0

wherels ) Tr(Psl̂rPs) is the reactivity in the singlet state andl0
) ls + le. A straightforward evaluation with the use of eq 4.24
gives the expression

The nonanalytical dependenceYr ∼ | Q|R is just a manifesta-
tion of the anomalous nature of subdiffusion in the well.
Noteworthy is that in the case whereR f 1 theδω-dependent
part vanishes, because in eq 4.24 the spin-dependent contribution
to Yr is taken into account in the lowest order inHz

0 [∼(Hz
0)R)].

At R ) 1, however, this term (linear inHz) does not contribute
to Yr.

CIDEP. Following the above-mentioned relation between
formulas for spin effects in processes assisted by conventional
and anomalous diffusion, one can relatively easily obtain the
expression for anomalous CIDEP using the conventional one.23

1. Free Diffusion Model.In the case of anomalous diffusion
(similar to eq 4.23)

Noteworthy is that for subdiffusion-assisted radical pair
recombination (0< R < 1) the CIDEP valueYe only weakly
depends onR.

2. Cage Model.In the cage model, CIDEP can be estimated
by means of the general expression 4.20. As in the case of
MARY, we will restrict ourselves to the limit of weak magnetic
interactions, (|Q|/w)R , le,|l̂ r|, and will evaluate CIDEP in the
lowest order of expansion ofYe in powers ofĤz

0

This formula shows that the power-type dependenceYe(Q) is
similar to Yr(Q) and differs from that predicted by the free
diffusion model (see eq 4.26) in the two times larger exponent
of the power dependence. Note that forR ) 1 formula 4.27
describes the case of conventional caging.24

RYDMR. For definiteness and brevity, we will analyze
specific features of RYDMR within the cage model. The case
of free diffusion differs only in the value of the exponent of
the characteristic power-type dependencies (see below).

Consideration of the most important specific features of
RYDMR can significantly be simplified in the limit of large
ST0 couplingωST0 ≡ Q ) ωa - ωb ∼ 〈Aµ〉 (see eq 4.10) and
the relatively weak microwave fieldω1: (|Q|/w)R . |lr|, le and
(ω1/w)R j |lr|, le. In this limit, quantum coherence effects on
the evolution of all states with large splitting (∼Q) are
negligible24 and evolution can be treated with balance equations.

Coherence effects are important only for four nearly degener-
ate pairs of states describing resonances, which do not overlap
in the considered limit. These pairs can be combined into two
groups, (|(〉b|-〉a, |T(〉) and (|(〉a|-〉b, |T(〉), denoted hereafter
asa( andb(, respectively. Transitions in pairsµ( (µ ) a, b)
are associated with those in the corresponding separate radical
µ.

The states|(〉a|-〉b, corresponding to the zerothz-projection
of the total spin (Sz ) 0), are the same for systemsµ ) a and
µ ) b. However, these systems can be considered as uncoupled
because in the studied limit of large|Q| values efficient
transitions in systemsa and b occur at different values ofω
(i.e., corresponding resonances do not overlap). For this reason,
it is possible to distinguish the same states|(〉a|-〉b, belong-
ing to a and b systems, and denote them as|a〉 or |b〉,
respectively (the subscript( or - can be omitted as it will be
explained below). The initial|S〉 state of the radical pair
corresponds to the population of|a〉 and |b〉 states with a
probability of 1/2.

Notice that these states are reactive with reactivity matrices
l̂ r
µ similar for all systems and determined as the two-level

variant of formula 4.21. The matricesl̂ r
µ describe reaction with

the rate approximately equal tols/2, wherels ) Tr(Psl̂rPs) is
the reactivity in the|S〉 state.

All pairs give the same contribution to the total yieldYr,
differing only in the resonance frequency (ωa or ωb) if they
correspond to different radicals. Therefore, we can combine the
identical contributions of the pairsµ+ and µ- into one Yµ
of two times larger magnitude and omit subscripts+ and
- in the notation of the pairs and their parameters, as it
has been mentioned above. In doing so, we arrive at the

Q ) ωa - ωb (4.22)

Yr ) (d/ri)φr[1 + (ReLj/d - 1/2)φr]
-1 (4.23)

Yr ≈ (ls/l0) - (ls/l0
2)Tr[PS(iĤz

0/w)RPS] (4.24)

Yr ) lsl0
-1 - 1

4
lsl0

-2 cos(π2 R)(|Q|/w)R (4.25)

Ye ) π(2RRex)
-1 tan(πR/4)Yr(d/ri ) 1) (4.26)

Ye ∼ π
2

(RRex)
-1(le/l0

2)sin(π2 R)(|Q|/w)R (4.27)
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representation ofYr in the form

whereYµ (µ ) a, b) are given by

with Pµ ) |µ〉〈µ| and l̂ r
µ ≈ (1/2)ls{Pµ, ...}.

In the considered limit of weak microwave fieldω1, the
effects ofω1-induced transitions can be treated perturbatively
in the lowest order expansion ofYr in |(Ĥµ/w)R/|l̂ r,e| , 1. In
this approximation

in which ls ) Tr(Psl̂rPs) and lµ ≈ (1/2)ls + ld.
A calculation using eq 4.29 gives for the magnetic-field-

dependent partyr, which is called the RYDMR spectrum

whereyµ (µ ) a, b) is written as

wherez ) ω/ω1 andê1 ) ω1/w.
It is worth noting some important specific features of the

anomalous RYDMR spectrum predicted by eq 4.33:
(1) Unlike Markovian diffusion, subdiffusion leads to the

nonanalytical dependence of the spectrum onHµ which can be
obtained in the lowest order inHµ. Similar to MARY, the lowest
order value of RYDMR vanishes in the limitR f 1, because
at R ) 1, the RYDMR amplitude is determined by the next
term of expansion inHµ.

(2) At largeω (at line wings) values, the RYDMR spectrum
contributionsyµ(ω) (µ ) a, b) decrease asyµ(ω) ∼ 1/ω2 - R,
that is, remarkably slower than the Lorenziany(ω) ∼ 1/ω2. This
slower behavior can be used for identification and analysis of
subdiffusive motion.

(3) The width of resonances is determined by the microwave
field strengthω1. This means that RYDMR spectra are always
measured in the saturation regime.1

(4) The dependence of the anomalous signal amplitudeYr

on the microwave field strengthω1 is nonanalytical, unlike that
for conventional diffusion (∼ω1

2). This anomalousYr depen-
dence onω1 can also be used for the analysis of subdiffusion.

(5) At first sight, the saturation regime is a manifestation of
long memory effects on the processes governed by subdiffusion
and the absence of the characteristic decay time. Therefore, in
the presence of such time, resulting, for example, from spin-
independent decay of radicals, the width seems to depend on
this time. In reality, however, this is not true. Indeed, in the
presence of decay with the ratew0, the magnetic-field-dependent
yield contributionsyµ (µ ) a, b) are still given by eq 4.32 but
with (iĤµ/w)R replaced by [(w0 + iĤµ)/w]R - (w0/w)R

wherez ) ω/ω1 andê1
0 ) ω1/w0. It is easily seen that in the

limit ω1 . w0 this expression reproduces eq 4.33, while in the
opposite limit it predictsyµ(z) ∼ 1/(1 + z2)1-R. Therefore, the

characteristic relaxation time does not show itself in the change
of the line width of RYDMR spectra, only slightly changing
the line shape.

Note that, similar to other magnetic field effects discussed
above, in the free diffusion model formula for the RYDMR
spectrum,Yr(z) differs from eq 4.34 only in the two times
smaller value of the exponent (R/2) of the power-type depen-
dence.

V. Concluding Remarks

This work concerns the study of the specific features of spin
relaxation and spin effects in radical pairs undergoing anomalous
(of type of subdiffusion) relative motion. The work concentrated
on the analysis of (1) the ESR spectrum of biradicals in the
limit of short effective (correlation) time of orientational
relaxation and (2) magnetic field (spin) effects in subdiffusion-
assisted radical pair recombination. The analysis was made with
the use of the non-Markovian SLE derived within the CTRW
approach which proved to be quite efficient in analyzing
considered multilevel quantum (spin) systems.

Some subtle properties of spectral and kinetic characteristics
of the above-mentioned processes were found: the peculiarities
of ESR line shape of biradicals and its dependence on the
parameters of processes, spin effect generation rates, RYDMR
line shape, etc. Analysis of these peculiarities allows one to
clarify the specific features of anomalous stochastic motion of
particles in some disordered nonequilibrium media. In particular,
the anomalous spectrum of biradicals, unlike conventional
spectrum, possesses quite pronounced shoulders in the wide
region of mobilities as well as distinguishable singularities at
some frequencies.

It is important to note that the majority of specific features
considered above are determined by the only anomaly parameter
R < 1. To clarify this fact, it is worth adding some comments.

(1) In the case of anomalous stochastic reorientation,R
governs the long time behavior of the orientation correlation
functionP(t) ∼ (wt)-R. The slow decay ofP(t) alone results in
the above-discussed peculiar behavior of the reorientation-
induced relaxation in quantum systems in the limit of short time
w-1. As applied to dephasing and the spectrum line shape,
instead of the conventional narrowing andδ-function-like
spectrum, we obtained a very nontrivial quite broad line shape
independent ofw.

(2) As for anomalous diffusion (subdiffusion), the parameter
R controls a similar long time decay of the memory in the
kinetics of diffusion jumps,P(t) ∼ (wt)-R, which manifests itself
in the anomalous long time dependence of the mean square
displacement〈r2〉 ∼ tR. This strong change of the migration
kinetics results in that of the statistics of subdiffusive re-
encounters and subdiffusion-assisted radical pair recombination
kinetics, for example, the recombination yieldYr ∼ 1/(wt)1+R/2.23

The change of the reencounter statistics leads, in turn, to the
anomalous characteristic dependencies of spin effect amplitudes
on the magnetic parameters with a major part of these depend-
encies controlled by the only parameterR. Moreover, the most
simple predictions of our rigorous consideration can be repro-
duced by the first reencounter approximation3 with the anoma-
lous reencounter probability∼Yr(t). The characteristic time
parameterw-1 (the time of the onset of the asymptotic behavior
of P(t)) determines only the amplitudes of the majority of
observables rather than their dependencies on physically inter-
esting parameters, as in the case of line shapes, dependence of
spin effects on interactionQ, microwave fieldω1, etc.

Yr ) Ya + Yb (4.28)

Yµ ) Tr{Pµ l̂ r
µ[ l̂ r

µ + ld + (iĤµ/w)R]-1Pµ} (4.29)

Yµ ≈ 1
2

(ls/lµ) - 1
2

(ls/lµ
2)Tr[Pµ(iĤµ/w)RPµ] (4.30)

yr(ω) ) ya(ω - ωa) + yb(ω - ωb) (4.31)

yµ(z) ) - 1
2

(ls/lµ)
2Tr[Pµ(iĤµ/w)RPµ] (4.32)

) - 1
2

cos(12 πR)(ls/lµ)2ê1
R(1 + z2)R/2-1 (4.33)

yµ(z) ∼ (1 + z2)-1[Re(1 + iê1
0 x1 + z2)R - 1] (4.34)
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Noteworthy is that the found dependence of observables on
the only parameter simplifies the possible observation and
analysis of anomalous effects and allows us to obtainR from
the experimental results.

Concerning the experimental investigations of spin effects,
they are usually made in connection with the analysis of
mechanisms of chemical processes of paramagnetic particles.
Typically, the processes under study include a few reactions
and are described by the complicated schemes with quite a large
number of adjustable parameters. In such a case, the manifesta-
tion of the details of relative motion is significantly shaded by
other effects. Unfortunately, only in very few works spin effects
are observed in pure model systems and are used for the analysis
of the nature and specific features of the relative motion of
particles. A number of them are summarized in reviews.3,4 Some
recent results have been presented in ref 25.

In this work, we restricted ourselves to analytical analysis of
the processes, however, the proposed method also allows for
the important simplification of numerical treatment of the
processes, especially in much more complicated multilevel spin
systems: pairs of triplet excited molecules, magnetic clusters,
magnetic glasses, and so forth, by reducing the problem to
operations with simple Hamiltonian matrices.
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