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Influence of Subdiffusive Motion on Spin Relaxation and Spin Effects in Radical Pairs
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Specific features of spin relaxation and the kinetics of spin effect generation in radical pairs (RPs) undergoing
subdiffusive relative motion are studied in detail. Two types of processes are analyzed: (1) spin relaxation
in biradicals, resulting from anomalously slow subdiffuisive reorientation (with the correlation furi{tipn

~ (wt)~™, where 0< a. < 1) and (2) spin effect generation in subdiffusion-assisted RP recombination. Analysis
is made with the use of the non-Markovian stochastic Liouville equation (SLE) derived within the continuous
time random walk approach. The SLE predicts anomalous (very slow and nonexponential) spin relaxation in
biradicals which results in some peculiarities of the spectrum of the system. In RP recombination, the
subdiffusive relative motion shows itself in slow dependence of the reaction¥ielureactivity and parameters

of the RP spin Hamiltonian and anomalous electron spin polarization of escaped radicals. The spectrum of
the reaction yield detected magnetic resonance, that i3 ttiependence on the frequenoyof microwave

field, is found to be strongly non-Lorenzian with the width determined by the field strangténd very
broad wings depending an Analysis shows that the majority of interesting, specific features of the observables
in both systems are controlled only by the parameter

I. Introduction by anomalous diffusion (subdiffusion) for which the mean
square displacemeit?(t)~ t*.8

Spin—lattice relaxation and spin effects are the well-known A number of phenomena, in which anomalous processes play

phenomena in the condensed-phase processes involving pargqoriant role, are discussed in the literatif&Some of them
magnetic particles, for example, radicais.They result from 5.0 analv7ed in relation to spectroscopic studies of quantum
spin-dependent interactions between these particles, stronglyyqs9.10 imijlar problems are considered in the classical theory
fluct_uatlng because of the stochastic relative motion of the  yiejectric relaxatioft (and references therein). All anomalous
particles. . ] . relaxation processes mentioned above cannot be properly
The methods of describing the manifestations of these described within the conventional SCT limit. The conventional
fluctuating interactions are well developed and discussed in SLE approach is not appropriate either.
detail in many books and reviews (see, for example, refs 1 and  The efficient method of analyzing the memory effects is based
5). A very large number of them are based on the conventional 5, the continuous time random walk (CTRW) appro#ch?
short correlation time (SCT) approximatiowhich leads to  \ithin this approach, one can derive the non-Markovian variant
Bloch-type equations for the spin density matrix. To treat the of g|_EL5.16 which appeared to be very fruitful for describing
problem outside the conventional SCT limit, different methods memory effects on some classical and quantum processes
have been proposed. One of them rests on the Zwanzigassisted by stochastic anomalous spatial migrafiéh.
projection operator formalisthUnfortunately, this formalism, In this work, the non-Markovian SLE is applied to the
Iead!ng to formally exact expressions, is not of great u_se_for analysis of specific features of spin relaxation and magnetic
apphf:atlons because it includes all the comple>_<|ty of statls_tlcgl field (spin) effectd4 in radical pairs undergoing subdiffusive
physics. Really, tractable formulas can be obtained only within \|5tive motion. As an example of relaxation processes, we will
additional approximations. Another method which enables one giscyss spin relaxation in biradicals with special attention
to make important steps beyond the SCT limit is based on the concentrated on the limit of short characteristic time (of type
semiclassical stochastic Liouville equation (SLE) for the density of correlation time), describing an anomalous stochastic reori-
matrix of the systerfi.The strong limitation of the SLE approach  enation process. In this limit, the kinetics of anomalous quantum
consists of classical treatment of the bath. At the same time, rg|axation in biradicals (induced by this reorientation) appears
unlike the Zwanzig formalism, the SLE approach is exact and, o pe independent of the particular model of orientational
therefore, is free of a number of above-mentioned drawbacks yg|axation'® demonstrating some interesting specific features.
of this formalism. Note the second significant limitation of the - as for magnetic field (spin) effects in radical pair recombination
SLE, important for this work, results from the assumption that assisted by relative subdiffusion, they are also shown to have
the interaction fluctuations are Markovian. some important specific features resulting from the anomalous
Recently, close interest to the effects of non-Markovian (with character of relative motion (associated with the anomalously
long memory) interaction fluctuations on relaxation in quantum long memory effects in the system): nonanalytical dependence
systems has been excited by investigations of processesof magnetic field affected recombination yield (MARY) and
governed by noises whose correlation functid?($) decay chemically induced dynamic electron polarization (CIDEP) on
anomalously slowly:P(t) ~ t¢ with & < 1. One of the most  the parameters of the spin Hamiltonian, strongly non-Lorenzian
actively discussed examples of such noises are those controlledshape of lines of reaction yield detected magnetic resonance
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(RYDMR), etc. The obtained specific features of various
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however, the observables are expressed in terms of the operator

observables can be used for the identification and analysis of G(r,ri|t) itself rather tharR(t) (see section IVC).

the anomalous motion of radicals in inhomogeneous media.

Il. General Formulation

We consider relaxation in the quantum system induced by M
guantum noise and fluctuating irreversible first-order processes
(the state-dependent decay, etc.). Evolution of the system is

described by the density matriqt) satisfying the Liouville

equation. In the absence of irreversible first-order processes, it

is written as f = 1)
p=—iH(t)p with Hp=Hp — pH (2.1)
Here

H(t) = H, + V(1) (2.2)

is the Hamiltonian in whichHs is the term independent of time
andV(t) is the fluctuating interaction, assumed to be symmetric

(V= 0) and resulting from stochastic jumps between the states

[r,0in the (discrete or continuum) spage,} = {r} with
diffe[ent\{z V, andH = H, (i.e., differentV =V, =[V,, ...]
andH = H,)

V=3 Ir,8,m,

and
H=3 Ir,H,m,| (2.3)
Hereafter, we will apply bra-ket notation
[k} |KKC= |KIK'|, and|rd (2.4)

for states in the Hilbert space (féf), in the Liouville space
(for H), and in{r} space, respectively.
The effect of the above-mentioned irreversible first-order

processes can be described by the non-Hermitian “reactivity”

operator—iK in the Liouville space so that, in general, the
Liouville equation can be represented as

p=—ilp, inwhichL=H—iK (2.5)

It is worth mentioning that the effect of the “reactivit}'ﬁ

can, in principle, lead to a violation in the positivity &.

However, there are some particular forms of this operator that \\ here & = ¢ + il.

are known to ensure the positiviyOne of themiKp = «{P,,po}
= k(P.,p + pP.), whereP, is the operator of projection onto
the reaction statéc[] will be applied in our work.

The time evolution of observables under study is determined

by the evolution operatdR(t) in the Liouville space averaged
over V(t) andK(t) fluctuations

p(t) = R(t)p; whereﬁz(t)zcre“f ST (2.6)

The operatoiR(t) can equivalently be represented in terms of
the conditional evolution operat@s(r,r'| t) averaged over the
initial distribution Pi(r)

Rt = G= z G(rrilHP(r) (2.7)

i

Note that for steady-stat(t) fluctuationsP;i(r) = Pg(r), where
Pe(r) is the equilibrium distribution. For some processes,

[ll. Non-Markovian Stochastic Liouville Equations

Continuous Time Random Walk Approach. Non-
arkovian V(t) and K(t) fluctuations can conveniently be
described by the CTRW approach treating them as a sequence
of changes oV andK. The onset of th@gh change is described
by the diagonal matrix:-’,-,l (in {r} space) of probabilities not
to have any change during tinteand its derivativel—1(t) =
—dP;—4(t)/dt, that is, the probability distribution matrix for times
of waiting for the change
P =Pt (>1) Pyt)=Pit) (3.1)
so thatW_y(t) = W(t) = —dP(t)/dt andWo(t) = Wi(t) = —dPi(t)/
dt. The matricesP;(t) and Wi(t) depend on the problem
considered. For example, for nonstationaryf(uctuationg?-14
Wi(t) = Wi(t) = WY (3.2)
In the case of stationang)(fluctuations,Wi(t) = Wi(t) = 7¢*
/7 dr W(r) with 7 = /g dt tW(t).12-14
It is worth noting useful relations for the Laplace transforms
of W(t) andPj(t): Pi(e) = [1 — Wj(¢)]/e and
W(e) =[1+ D()] " P(e) =[e + elD(e)] " (3.3)
whered(¢) is the auxiliary matrix diagonal ifir} space.
Stochastic Liouville Equation. The time evolution of
quantum systems with fluctuating interactions is completely
described by the conditional evolution opera(r,r'|t). The
CTRW approach allows one to derive the equation for this
operator which is called hereafter non-Markovian SEE In
what follows, we will discuss the SLE in the form proposed in
ref 16, which is much more suitable for our further general
analysis and especially for considering anomalous relaxation
processes. The non-Markovian SLE is conveniently represented
in the resolvent form for the Laplace transfofage) = /5 dt
efeté(t)15,16
G=P + Q'®Q)[D(Q) + L] PW, (3.4)
In eq 3.4,P; and W are the Laplace
transforms of the initial probability distribution matrices defined
in eq 3.1 andP(€2) is the matrix which characterizés(t) =
W, (t) (see eq 3.3).
The operatorl describes jump-like radical motion. For
simplicity, we will assume that one of the radicals undergoes
isotropic diffusion in three-dimension&t} space, while the

second radical does not move and is located at 0. In this
model

L=0[y==-2""2V,[rXV, + V,u)] (3.5)
wherer = |r|, V, = dlor is the gradient operatoi? is the
average square of the jump length independent ahdu;, is
the external interaction potential.

The potentialy, is assumed to be the deep spherical well of
radiusR much larger than the distandeof closest approach of
radicals: ur = —Ugf(R — r) with up > 1.
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Notqworthy is that in this continuum model of stochastic
jumpsV andK are just functions of

V= z |r OV, |
r
and

K = z Ir K, | (3.6)
r

If operatorL (eq 3.5) has the equilibrium eigenstdéeg=
> Pe(r)rO(and [&| = 3, O|) for which L|e0= 0, then the
system relaxes to this state.

In our analysis, we will concentrate on anomalous interaction
fluctuations which are often modeled %

d(e) = (ew)® (0 <o <1) (3.7)

wherew is the important rate parameter which determines the
characteristic tim&! of correlations of interaction fluctuations.

Formula 3.7 presents the simplest variant of the model describ-

ing anomalously slow decay of the probability distribution
matrix@ with P(t) = E,[—(wt)%] and
W) = —E [—(wt)®] ~ 1/ (3.8)
whereEq(—x) = (27i)~1 /'%_ dx(z + xZ~%)~e?is the Mittag-
Leffler function® It is easily seen that this anomalous type of
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V= w4(cos 6 — 1/3)(38,S,— S,S)

wherewy = (3/4)b3hy? andy = gug/h is the gyromagnetic
ratio. The fluctuations oV are assumed to be governed by
orientational relaxation of the biradical resulting in fluctu-
ations of the anglé between the vectdy of the relative position
of radicals and the direction of the external magnetic field
B.l

Model of Orientational Relaxation. The problem of the
study of spin relaxation kinetics and the evaluation of ESR line
shape reduces to solving the complicated SLE (eq 3.4) corre-
sponding to anomalous relative orientational motion of bi-
radicals. Analytically this can be done within a number of
approaches, for example, subdiffusion (withdefined in eq
3.5) or sudden reorientation modéts8Earlier consideratior$
demonstrated that both these types of models reproduced quite
well all conventional specific features of dephasing in biradicals.

We are not going to analyze in detail different models of
orientational relaxation but restrict ourselves to the demonstra-
tion (as an example) of the simple expressioriim the sudden
reorientation modelR = R, = [Pl — OWJ~L. This expression
enables one to easily obtain a formula Ry in the limit of
short characteristic time~! of anomalous orientational relax-
ation1® The limiting formula is, in fact, independent of the
mechanism of reorientation and is of main interest for our further
analysis.

It is important to note that, in the case of anomalous
reorientation statistics (with the correlation functieft) ~ 14~

(4.2)

the CTRW approach cannot be characterized by any averageo. < 1)) such as that predicted by model 3v8;! cannot be

time and, therefore, for model 3.7, only the nonstationa)y (
variant of the CTRW is physically sensible.

Note that for any initial stat@,[= 3 Pi(r)[r[the average of
some operatoN can be represented a¥0] = @,|Y|| OIn
particular (see eq 2.7)

R(®) = &6li,C= 60 (3.9)

According to eq 3.4, the initial state_manifests itself only
in the expressions for matric&¥(t) andP;(t). For example, in
the nonstationarp-CTRW approach, which is of main interest
for this analysis|id= |t12-14 so thatW, = W, P; = P,,, and

Gyle) =

IV. Applications and Discussion

Gle) = QOQ)[P(Q)+ L]t (3.10)

Here, we will apply the general formulas presented above to
two types of processes: transversal spin relaxation (dephasing)
in biradicals (as applied to the ESR line shape) and spin effects

in RP recombination in liquids, which will be analyzed to
illustrate the obtained general results.

A. Relaxation in Biradicals. 1. Formulation of the Model.
Interaction. In accordance with the conventional formulation,
we will consider spin relaxation in biradicals in the strong
magnetic fieldB. The biradical is modeled as a pair of pointlike
paramagnetic particles with electron spins of 1%,and S,
located at a fixed interparticle distanggn the strong magnetic
field B. Dephasing (transversal relaxation) results from the
modulation of the Zeeman levels caused by the fluctuating
magnetic dipole-dipole interactiort. This process is described
by the Hamiltoniah

Hy=—0dS, +$) + V() (4.1)

in which

treated as the correlation time. Actually, in this model, the
correlation (average) time does not exist. This peculiarity of
the anomalous reorientations results in a very unusual behavior
for the relaxation kinetics in the quantum system in the limit of
shortw™! (see below).

Spectrum. In the considered case of anomalous interaction
fluctuations, the biradical spectrutw) cannot be defined by
the conventional formula in terms of the Fourier transformation
of the correlation function because it appeals to the Wiener
Khinchin relation which is not valid for anomalously slovit)
interaction fluctuations. The relaxation properties of such anom-
alous systems can be analyzed with the use of the anomalous
spectrum measured by Fourier transformed free induction decay
(FTFID) experiment¥ | (w) ~ [ dt cost)[B(t)[JwhereS is
the x component of the spin. For considered anomalous
fluctuations, this spectrum represents the generalization of the
conventional one. For the system under study, the anomalous
FTFID spectrum is written as follows

l(w) =

= R@q Riw)ss] (4.3)

where

|sd=— |T, T,[H | T_T,D (4.4)

f

2. Results.In our analysis of the biradical spectrum, we will
restrict ourselves to the limit of short effective correlation time
w1 of fluctuations (see eq 3.7) in whiahg/w < 1. The SCT
limit is of special interest because in this limit any conventional
Markovian (diffusion or sudden reorientation type) models of
orientational relaxation predict the collapse of the spectrum, that
is, the transformation to thé-function-like one at the center
of the spectrum:?! At the same time, in anomalous non-
Markovian models (with the CTRW reorientation statistics,
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described by eqs 3.3 and 3.7), the limiting spectrum is

incomparably less trivial. The corresponding specific features
of anomalous non-Markovian reorientation mechanism manifest
themselves not only in dephasing (and, therefore, in spectrum)
but also in population relaxatid.

Some interesting unusual properties of anomalous relaxation
caused by anomalous non-Markovian reorientation can easily
be demonstrated even with the general expression for the
evolution operator, which in the anomalous SCT limitg/fv
< 1) is represented #s

R(e) ~ R (€) ~ R (Q)ID(Q)0 (4.5)
The most important property consists in nontrivial form of this
operator, which is independent of the characteristic timné
and is only determined by the anomalous expore(gee eqs
3.7 and 3.8).

Note, in addition, that the expression 4.5 is quite universal:
it is valid for any mechanism of anomalous orientational
relaxation of subdiffusion or sudden reorientation type. The only
feature implied in the derivation of this expression is the slow
asymptotic long time behavior of\(t) ~ 1A'*e. Further-
more, the analysis of formula 4.5 with the Markovian repre-
sentation for the anomalous CTRW proce$sekows that the
formula is valid for a large variety of the initial waiting-time
distribution Wi(t) (see section Ill) of the nonstationary CTRW
process.

To obtain the spectrum(w), one should substitute the
expression 4.5 into eq 4.3. After simple algebra, one arrives at

I(x) = % [0 + 1o(—¥)]  with x= (0 — 0)lwy  (4.6)

Here,lo(X) is given by formula

1,04 = Sir;r% _ ng wil hl wil 1/:1 4.7
W4+ @) + 2y yf cosg,
in which ¢o = 7 and
Y =[x — Viwy’o(x — Vie )T
= (1 —x""B(1/2, 1+ p) (4.8)
¥ = X — Viog 0(Viw, — )5
=940 [ dv (0 - 1 (4.9)

wheref(x) is the Heaviside step functioB(y,2) is Euler's
function22 and u(x) = (3/(1 — x))¥2

The anomalous biradical spectrum evaluated with eq 4.6 for
different values ofa. < 1 is shown in Figure 1. In general,
specific features of the shape of this spectru(x) are
significantly different from those of the conventional spectrum
(observed in the case of reorientation relaxation resulting from
conventional rotational diffusior):

(2) I(x) is confined in the region-2 < x4 < 2; asa. increases
from O to 1, the spectrum changes from the quasistatic one to
that of Lorenzian shape with the widily ~ (1 — )wg at 1 —

o < 1. The central peak appearsat as ~ 0.32.

(2) Unlike the conventional spectrum, far < 1/, the
anomalous spectruihx) is singular aix = +1: at|x] < 1 and
1— X <1,0(x)~ 1 — x)2

(3) As o — 1, the spectruni(x) reduces to the Lorenzian
one (similar to the case of the two-level systéay with the
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1(x)

0-

Figure 1. Biradical ESR spectrum(x), wherex = w/wq, calculated
in model 4.2 (using eq 4.6) for different valuesaf (1) oo = 0.3, (2)
o= 0.5, (3)a = 0.7, and (4)o. = 0.85.

width w_ decreasing asi ~ wy(1 — o).18 Note that, unlike the
Lorenzian spectrum in the conventional narrowing lifnihe
anomalous spectrum (eq 4.6) for — 1 has the widthw_
independent of the characteristic time™. For o. approaching
1, the spectrum(x) — A(X), as it is expected for Markovian
fluctuations withw — oo,

This brief discussion of the anomalous spectrum shows that
its peculiarities are fairly pronounced and can, probably, be
observed experimentally. In the case of finite effective correla-
tion timew™1, the above-mentioned singularities of the anoma-
lous spectrum(x) will, of course, be partially smoothed but,
nevertheless, the most important specific feature$9f such
as very pronounced shouldersat £1, are expected to persist.

B. Radical Pair Recombination. The spin (magnetic field)
effect on reactions of paramagnetic particles undergoing sub-
diffusive relative motion is another interesting example of
processes in which the manifestation of anomalously long
memory (associated with an anomalous (subdiffusive) type of
motion) in observables is expected to be markedly strong. In
this work, we will consider spin effects in radical pair
recombination.

It is worth noting that the anomalous SLE which describes
spin effects turns out to be fairly close to the conventional one
in its mathematical form and, therefore, the corresponding
anomalous expressions for amplitudes of spin effects can be
obtained by clear and simple modifications of the conventional
ones. This will allow us to analyze a number of anomalous
effects of different types by analogy with the corresponding
conventional effects.

1. Formulation of the Model. Interaction between Radi-
cals. To demonstrate the most important specific features of
anomalous spin effect on subdiffusion-assisted radical pair
recombination, we will restrict ourselves to the analysis of
simple effects observed in the strong magnetic fi2fdr which
the Zeeman interaction is much larger than intraradical interac-
tions (hyperfine interaction, etc.) but will also consider the effect
of the external microwave fiel8; rotating with the frequency
w in the plane perpendicular .

For strong magnetic fields (in the presence of the figfyl
the spin Hamiltonian governing the evolution of electron spins
S, and S, of radicals, denoted asandb, can conveniently be
written in the frame of reference rotating arouBdwith the
frequencyw?

H =H2+J (4.10)
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In this equation, the last term is the exchange interaction

3, = Jge ol (% + 2saso) (4.11)

and

H=H,+H, (4.12)

is the Zeeman part, which is a sum of two ones defined as
(u=ab) (4.13)

wherew, = g,fB + 3 A'lj; is the Zeeman frequency of the
radicalu possessing some paramagnetic nuclei with hyperfine
interactionsA" and w1 ~ 1/2(ga + go)3B1. The Hamiltonian
(eq 4.10) operates in the space of radical pair spin sStatgist[J
or in the space of eigenstates of the total pin S, + S»: |S]
= VM(+Hd—0 — |-Q+), [ToD= VEMA|+0E-6 +
|—H+0), and [T+0= ||+

In the absence of the microwave field, the evolution is still
described by the spin Hamiltonian (eq 4.10) but with= 0
andw = 0.

H, = (0, — 0)S,+ oS

Ux
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expression foiG, one needs to solve the homogeneous equa-
tion?3

(Qm)*+ L J§=0 where=MG (4.19)
Fortunately, this can be done within the approach called sudden
perturbation approximatio##:2* The details of the method can
be found elsewher®& Here, we will only outline its main points.
In this approach, in the lowest order in the small paraméter
= (wap/W)(ol)™2 < 1, the solutionsy(r) can be found by
matching (at some distaneg) two simplified solutionsg-(r)
and g+(r) obtained atr < ro andr > rop, respectively. The
functionsd-(r) andd,(r) are still the solutions of eq 4.19 but
with Q = QF = J and Q = Q~ = ¢ + K, + iH.,
respectively. Since the matrixé3,* and €2,~ are diagonal in
the bases independent fthe problem of determining-_(r)
and §.(r) reduces to solving one-channel equations. It is
important to note that this piecewise solutigm), obtained in
the lowest order of expansion in the powers df 1, is
independent of the auxiliary parameter(as was rigorously
showr?® and as actually should be).

The one-channel solutions required for constructing the

Radical pair recombination can be treated as a contact reactionmatrix solutionsj—(r) andg.(r) can be found analytically in a

at a distance of closest approathising the following simple
modef

K, =kgd(r —d)od+ A —r)

whereks = {Ps, ..} is the anticommutator{Ps,p} = Pso +
pPs) in which Ps = |S1§ is the operator of projection on the
singlet (SJ radical pair spin state.

The radical pair is assumed to be initially created in [Bé
state within the welly; at a distance;, d < r; < R, so that

(4.14)

plrt=0) = pi(r) = (4ar?) 0(r = r)P,  (4.15)
Spin Effect Observables.In experiments on spin effects, a
number of observables are discus$etire, we analyze the most
simple ones:
(1) Two of the most popular are MARYand RYDMR?# In

both types of experiments, the observables under study are

recombination ;) and dissociationYy) yields

Y, =1- Y, = (dIr)’°Ak,Tr[P.G(d, r;|e = 0)P]  (4.16)

Naturally, formula 4.16 should be averaged over nuclear

configuration (ovem,). However, in our further discussion, we

will omit this procedure and analyze the behaviolfpfor fixed

w, andwy, (as in radical pairs without paramagnetic nuclei).
(2) Another well-known type of magnetic field effects is

multiplet CIDEP determined &s

Ye=Lmeﬂ>dd3r Tr[SG@, r|e)P]  (4.17)

2. Anomalous SLE.Subdiffusion of the mobile radical of

the radical pair (recall that the second radical is assumed to be

immobile) leads to nonstationary fluctuationskyfandH;. The
effect of them is described by the opera€fr,ri|¢) satisfying
the non-Markovian SLE (eq 3.10)
QG=—-L,MG)+ (@ar) o —r) (4.18)
whereQ, = ¢ + K, + iH, andM, = Q/®(Q,) = w(Q,/w)L <.
In general, the solution of eq 4.18 with the Smoluchowski
operatorLp (eq 3.5) is fairly complex. First of all, to find the

number of realistic models. To illustrate the most interesting
specific features of spin effects, it is sufficient to consider the
simplest ones. In our analysis, we will concentrate on the models
of free diffusion and diffusion in a deep wel (called a cage
modep4).

_ Free Diffusion Model. For the free diffusion model (with

Lp = — A&~2v(r2v,)), a direct comparison of the anomalous
SLE (eq 4.18) with the corresponding conventional?8raad

the analysis made above (see section IVB2) allow for the
conclusion that expressions for the values of spin effects derived
earlief® remain the same but with the exchange and intraradical
interaction termsloe~%{~9 andiQ/D replaced byige %~ d]e

and {Q/D)%, respectively. This observation enables one to obtain
formulas for the values of MARYY;), RYDMR [Y;(w)], and
CIDEP (Ye) easily.

Cage Model.In the presence of the large deep potential well
U = — UfR — r), for which R > d and up > 1, fast
subdiffusion leads to rapid relaxation of the initial spatial
distribution of the radical (created within the well) during the
time 7p = (R/A)?%/w and formation of the nearly homogeneous
quasi-equilibrium state (cage) within the well. At 7p, reaction
(with the second radical at= 0) and dissociation result in the
guasi-stationary decay of the cage which is independent of the
distancer; of radical pair creation. In this system, the (anoma-
lous) recombination kinetics can be found within the approach
proposed in ref 24

Y, =Te{i,[T + (iH W) Py (v=r,€ (4.20)
wherePs = |ST is the projection operator on th& state and
[ =1, + Ij + le. In eq 4.20, the supermatrixgsle, andl; describe
the effect of recombination, escaping from the cage, and
exchange interaction, respectively

I, = BAIR)P(1+ 9"

l,=30/R?% " (4.21)
andfj = (3AZRI)[Ly|SToIS Tyl + L|ToSIToS], where L
o~ Y doy + In[2Jy/(WA204?)] + i/2}, with oy = aaex andgs =
(Ad/2?) (koicg/ W)
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Noteworthy is that, in accordance with the general properties
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1. Free Diffusion Model.In the case of anomalous diffusion

of the subdiffusion-assisted processes and the correspondindsimilar to eq 4.23)

non-Markovian SLEs mentioned above, the general expression
4.20 for anomalous observables differs from the conventional
oné* by replacingH? by (H2)® and renormalizing the reaction
and relaxation radii.

3. Results.A simple inspection of general matrix formulas
of section IVB2 demonstrates that the expressions for the
amplitudes of anomalous and conventional spin effects are
actually very similar. As we have already mentioned above,
the difference mainly reduces to replacing the conventional

reaction and dephasing radii by the corresponding anomalous,

ones and changing the spin Hamiltontaswith (H,)®. The last
change shows itself in the change of the dependence of spin
effects on theST, splitting

Q=w,— o, (4.22)
For example, in the conventional free diffusion model spin
effects are~|Q|*2, while in the anomalous free diffusion
(subdiffusion) one spin effects are|Q|*2 (see below).

MARY. In the considered limit of the strong magnetic field
B, B > AJ”/(gﬂﬂB), the effect of spin evolution on the reaction
yield called MARY can be studied within th®T, approxima-
tion,* which takes into account that for stroBghe contribution
of |T.Oterms to the reaction yield is negligibly small and the
spin Hamiltonian is given by eq 4.10 with; = 0 andw = 0.

We also putly = 0 because the effect of the exchange interaction
on MARY is known to be negligibly weak.

1. Free Diffusion Model. Taking into account the expression
for the yieldY, in the case of conventional diffusitand above
remarks on the relation between this formula in conventional
and anomalous processes, one can write in the limit of strong
reactivity in theS state and initial population of th&, state

Y, = (d/r)¢é[1 + (Rel/d — 1/2)gz>r]71 (4.23)
whereg, = cosra/4)(|Q|d%/22w)*2, Noteworthy is the anoma-
lously weak dependence df on the parameteiQ|d4/A2w for
o < 1, which reduces to the conventional onenat= 1.

2. Cage Model.The important features of anomalous MARY

Y, = 7(200,) " tan@a/d)Y,(dir; =1)  (4.26)

Noteworthy is that for subdiffusion-assisted radical pair
recombination (0< a < 1) the CIDEP valuéY, only weakly
depends ormu.

2. Cage Model.In the cage model, CIDEP can be estimated
by means of the general expression 4.20. As in the case of
MARY, we will restrict ourselves to the limit of weak magnetic
interactions, |Q|/w)® < l,|i;|, and will evaluate CIDEP in the
lowest order of expansion of. in powers ofA,°

Yo~ Jlaoe) s o Qi (4.27)

This formula shows that the power-type dependevi€®) is
similar to Y,(Q) and differs from that predicted by the free
diffusion model (see eq 4.26) in the two times larger exponent
of the power dependence. Note that for= 1 formula 4.27
describes the case of conventional cagdthg.

RYDMR. For definiteness and brevity, we will analyze
specific features of RYDMR within the cage model. The case
of free diffusion differs only in the value of the exponent of
the characteristic power-type dependencies (see below).

Consideration of the most important specific features of
RYDMR can significantly be simplified in the limit of large
STo couplingwsto = Q = wa — wp ~ [A(see eq 4.10) and
the relatively weak microwave field,: (]Ql/w)* > ||, le and
(w1/w)® < Ii], le. In this limit, quantum coherence effects on
the evolution of all states with large splitting~Q) are
negligible* and evolution can be treated with balance equations.

Coherence effects are important only for four nearly degener-
ate pairs of states describing resonances, which do not overlap
in the considered limit. These pairs can be combined into two
groups, [+0|F04, [TO and (£Q|FH, |TLD, denoted hereafter
asa. andb., respectively. Transitions in pairs. (u = a, b)
are associated with those in the corresponding separate radical

dependencies can be demonstrated in the limit of weak magnetic .The state$+[J|F L4, corresponding to the zerogprojection

interactions, |Q|/w)® < Ig,|i;|, in which one can evaluate MARY
with the lowest order of expansion ¥f (eq 4.20) in the powers
of HO

Y, ~ (Idl)) = (1) THP(H,wW)*Py

wherels = Tr(PJrPS) is the reactivity in the singlet state ahgd
= ls+ le. A straightforward evaluation with the use of eq 4.24
gives the expression

(4.24)

Y =14, - % 11y cos(% (1)(|Q|/W)“ (4.25)
The nonanalytical dependente~ | Q|% is just a manifesta-
tion of the anomalous nature of subdiffusion in the well.

Noteworthy is that in the case wheme— 1 the dw-dependent

of the total spin § = 0), are the same for systems= a and
u = b. However, these systems can be considered as uncoupled
because in the studied limit of large| values efficient
transitions in systema andb occur at different values ab
(i.e., corresponding resonances do not overlap). For this reason,
it is possible to distinguish the same states]|+[4, belong-
ing to a and b systems, and denote them é&alor |bC]
respectively (the subscript or — can be omitted as it will be
explained below). The initialSJ state of the radical pair
corresponds to the population ¢dJand |blstates with a
probability of 1/2.

Notice that these states are reactive with reactivity matrices
T” similar for all systems and determined as the two-level
variant of formula 4.21. The matricésdescribe reaction with
the rate approximately equal tg2, wherels = Tr(Pd,Py) is

part vanishes, because in eq 4.24 the spin-dependent contributiothe reactivity in thelSstate.

to Y; is taken into account in the lowest ordeg [~(HL)Y)].
At o = 1, however, this term (linear iH;) does not contribute
toY,.

CIDEP. Following the above-mentioned relation between
formulas for spin effects in processes assisted by conventional
and anomalous diffusion, one can relatively easily obtain the
expression for anomalous CIDEP using the conventionaféne.

All pairs give the same contribution to the total yie¥g,
differing only in the resonance frequencys(or wy) if they
correspond to different radicals. Therefore, we can combine the
identical contributions of the pairg+ and u- into one,
of two times larger magnitude and omit subscrigtsand
— in the notation of the pairs and their parameters, as it
has been mentioned above. In doing so, we arrive at the
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representation oY, in the form characteristic relaxation time does not show itself in the change
of the line width of RYDMR spectra, only slightly changing
Y=Yt Y, (4.28)  the line shape.

Note that, similar to other magnetic field effects discussed
above, in the free diffusion model formula for the RYDMR
Y = TriP 1“1 + 1.+ (0 )P 4.29 spectrum,Y,(2) differs from eq 4.34 only in the two times
“ Rl A g+ (R WP ( ) smaller value of the exponent/) of the power-type depen-
with P, = |u(&| andi* ~ (1/2){Py, ..}. dence.
In the considered limit of weak microwave field;, the _
effects ofws-induced transitions can be treated perturbatively V. Concluding Remarks
in the lowest order expansion of in [(H/wW)%/|l; ¢ < 1. In
this approximation

whereY, (u = a, b) are given by

This work concerns the study of the specific features of spin
relaxation and spin effects in radical pairs undergoing anomalous
(of type of subdiffusion) relative motion. The work concentrated
on the analysis of (1) the ESR spectrum of biradicals in the
limit of short effective (correlation) time of orientational

Y~ 20 - 2ap TR, (R R .30

in which | :.Tr(Ps,I\r.Ps) andl, ~ (1/2)s + la. o relaxation and (2) magnetic field (spin) effects in subdiffusion-
A calculation using eq 4.29 gives for the magnetic-field- assisted radical pair recombination. The analysis was made with
dependent par;, which is called the RYDMR spectrum the use of the non-Markovian SLE derived within the CTRW
_ approach which proved to be quite efficient in analyzing
Yi(@) = Yo(@ — @) + Yp(w — wy) (4.31) considered multilevel quantum (spin) systems.

Some subtle properties of spectral and kinetic characteristics
of the above-mentioned processes were found: the peculiarities
of ESR line shape of biradicals and its dependence on the
parameters of processes, spin effect generation rates, RYDMR
line shape, etc. Analysis of these peculiarities allows one to
=_ % Cog(% mx)(l S/|ﬂ)2§l°‘(1 + 22)012—1 (4.33) clarify the specific features of anomalous stochastic motion of

particles in some disordered nonequilibrium media. In particular,
the anomalous spectrum of biradicals, unlike conventional
spectrum, possesses quite pronounced shoulders in the wide
anomalous RYDMR spectrum predicted by eq 4.33: region of mobiljties as well as distinguishable singularities at

(1) Unlike Markovian diffusion, subdiffusion leads to the som.e f'requenues. o -
nonanalytical dependence of the spectruntrwhich can be It is important to note that the majority of specific features
obtained in the lowest order H,. Similar to MARY, the lowest ~ considered above are determined by the only anomaly parameter
order value of RYDMR vanishes in the limit — 1, because @ < 1. To clarify this fact, it is worth adding some comments.
at o = 1, the RYDMR amplitude is determined by the next (1) In the case of anomalous stochastic reorientation,

wherey, (1« = a, b) is written as

Y,(2) = = 5 (1,°THP, i Jw)°P,] (4.32)

wherez = w/w; and&; = wi/w.
It is worth noting some important specific features of the

term of expansion it,. governs the long time behavior of the orientation correlation
(2) At largew (at line wings) values, the RYDMR spectrum  functionP(t) ~ (wt)~*. The slow decay oP(t) alone results in
contributionsy,(w) (u = a, b) decrease ag.(w) ~ Lw? ~ %, the above-discussed peculiar behavior of the reorientation-
that is, remarkably slower than the Lorenzigm) ~ 1/w? This induced relaxation in qguantum systems in the limit of short time
slower behavior can be used for identification and analysis of w%. As applied to dephasing and the spectrum line shape,
subdiffusive motion. instead of the conventional narrowing armdfunction-like

(3) The width of resonances is determined by the microwave spectrum, we obtained a very nontrivial quite broad line shape
field strengthw;. This means that RYDMR spectra are always independent ofv.
measured in the saturation regife. (2) As for anomalous diffusion (subdiffusion), the parameter
(4) The dependence of the anomalous signal amplitjde @ controls a similar long time decay of the memory in the
on the microwave field strength; is nonanalytical, unlike that  kinetics of diffusion jumpsP(t) ~ (wt)~¢, which manifests itself
for conventional diffusion {w1?). This anomalou®, depen- in the anomalous long time dependence of the mean square
dence onw; can also be used for the analysis of subdiffusion. displacementi2~ t®. This strong change of the migration
(5) At first sight, the saturation regime is a manifestation of kinetics results in that of the statistics of subdiffusive re-
long memory effects on the processes governed by subdiffusionencounters and subdiffusion-assisted radical pair recombination
and the absence of the characteristic decay time. Therefore, inkinetics, for example, the recombination yiéfd~ 1/(wt)1+®223
the presence of such time, resulting, for example, from spin- The change of the reencounter statistics leads, in turn, to the
independent decay of radicals, the width seems to depend onanomalous characteristic dependencies of spin effect amplitudes
this time. In reality, however, this is not true. Indeed, in the on the magnetic parameters with a major part of these depend-
presence of decay with the ratg, the magnetic-field-dependent  encies controlled by the only parameterMoreover, the most
yield contributionsy, (« = a, b) are still given by eq 4.32 but  simple predictions of our rigorous consideration can be repro-
with (iH,/w)* replaced by [io + iH,)/w]* — (wo/w)* duced by the first reencounter approximafieith the anoma-
lous reencounter probability-Y,(t). The characteristic time
VD~ A+ REL+iEVI+A—1]  (4.34)  parametew ! (the time of the onset of the asymptotic behavior
of P(t)) determines only the amplitudes of the majority of
wherez = wlw; and&,° = wi/wo. It is easily seen that in the  observables rather than their dependencies on physically inter-
limit w1 > wp this expression reproduces eq 4.33, while in the esting parameters, as in the case of line shapes, dependence of
opposite limit it predictsy(z) ~ 1/(1 + 22« Therefore, the spin effects on interactio®, microwave fieldw,, etc.
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